Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Dev Ctries ; 18(4): 600-608, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38728644

RESUMEN

INTRODUCTION: Human Mpox (formerly monkeypox) infection is an emerging zoonotic disease caused by the Mpox virus (MPXV). We describe the complete genome annotation, phylogeny, and mutational profile of a novel, sustained Clade I Mpox outbreak in the city of Kamituga in Eastern Democratic Republic of the Congo (DRC). METHODOLOGY: A cross-sectional, observational, cohort study was performed among patients of all ages admitted to the Kamituga Hospital with Mpox infection symptoms between late September 2023 and late January 2024. DNA was isolated from Mpox swabbed lesions and sequenced followed by phylogenetic analysis, genome annotation, and mutational profiling. RESULTS: We describe an ongoing Clade I Mpox outbreak in the city of Kamituga, South Kivu Province, Democratic Republic of Congo. Whole-genome sequencing of the viral RNA samples revealed, on average, 201.5 snps, 28 insertions, 81 deletions, 2 indels, 312.5 total variants, 158.3 amino acid changes, 81.66 intergenic variants, 72.16 synonymous mutations, 106 missense variants, 41.16 frameshift variants, and 3.33 inframe deletions across six samples. By assigning mutations at the proteome level for Kamituga MPXV sequences, we observed that seven proteins, namely, C9L (OPG047), I4L (OPG080), L6R (OPG105), A17L (OPG143), A25R (OPG151), A28L (OPG153), and B21R (OPG210) have emerged as hot spot mutations based on the consensuses inframe deletions, frameshift variants, synonymous variants, and amino acids substitutions. Based on the outcome of the annotation, we found a deletion of the D14L (OPG032) gene in all six samples. Following phylogenetic analysis and whole genome assembly, we determined that this cluster of Mpox infections is genetically distinct from previously reported Clade I outbreaks, and thus propose that the Kamituga Mpox outbreak represents a novel subgroup (subgroup VI) of Clade I MPXV. CONCLUSIONS: Here we report the complete viral genome for the ongoing Clade I Mpox Kamituga outbreak for the first time. This outbreak presents a distinct mutational profile from previously sequenced Clade I MPXV oubtreaks, suggesting that this cluster of infections is a novel subgroup (we term this subgroup VI). These findings underscore the need for ongoing vigilance and continued sequencing of novel Mpox threats in endemic regions.


Asunto(s)
Genoma Viral , Monkeypox virus , Mpox , Filogenia , Secuenciación Completa del Genoma , Humanos , República Democrática del Congo/epidemiología , Estudios Transversales , Monkeypox virus/genética , Monkeypox virus/clasificación , Masculino , Mpox/virología , Mpox/epidemiología , Femenino , Adulto , Brotes de Enfermedades , Mutación , Adolescente , Adulto Joven , Niño , Preescolar , Persona de Mediana Edad , Estudios de Cohortes
2.
NAR Genom Bioinform ; 6(1): lqae018, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38385146

RESUMEN

The decreasing cost of whole genome sequencing has produced high volumes of genomic information that require annotation. The experimental identification of promoter sequences, pivotal for regulating gene expression, is a laborious and cost-prohibitive task. To expedite this, we introduce the Comprehensive Directory of Bacterial Promoters (CDBProm), a directory of in-silico predicted bacterial promoter sequences. We first identified that an Extreme Gradient Boosting (XGBoost) algorithm would distinguish promoters from random downstream regions with an accuracy of 87%. To capture distinctive promoter signals, we generated a second XGBoost classifier trained on the instances misclassified in our first classifier. The predictor of CDBProm is then fed with over 55 million upstream regions from more than 6000 bacterial genomes. Upon finding potential promoter sequences in upstream regions, each promoter is mapped to the genomic data of the organism, linking the predicted promoter with its coding DNA sequence, and identifying the function of the gene regulated by the promoter. The collection of bacterial promoters available in CDBProm enables the quantitative analysis of a plethora of bacterial promoters. Our collection with over 24 million promoters is publicly available at https://aw.iimas.unam.mx/cdbprom/.

3.
Biology (Basel) ; 13(2)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38392343

RESUMEN

Poxviridae is a family of large, complex, enveloped, and double-stranded DNA viruses. The members of this family are ubiquitous and well known to cause contagious diseases in humans and other types of animals as well. Taxonomically, the poxviridae family is classified into two subfamilies, namely Chordopoxvirinae (affecting vertebrates) and Entomopoxvirinae (affecting insects). The members of the Chordopoxvirinae subfamily are further divided into 18 genera based on the genome architecture and evolutionary relationship. Of these 18 genera, four genera, namely Molluscipoxvirus, Orthopoxvirus, Parapoxvirus, and Yatapoxvirus, are known for infecting humans. Some of the popular members of poxviridae are variola virus, vaccine virus, Mpox (formerly known as monkeypox), cowpox, etc. There is still a pressing demand for the development of effective vaccines against poxviruses. Integrated immunoinformatics and artificial-intelligence (AI)-based methods have emerged as important approaches to design multi-epitope vaccines against contagious emerging infectious diseases. Despite significant progress in immunoinformatics and AI-based techniques, limited methods are available to predict the epitopes. In this study, we have proposed a unique method to predict the potential antigens and T-cell epitopes for multiple poxviruses. With PoxiPred, we developed an AI-based tool that was trained and tested with the antigens and epitopes of poxviruses. Our tool was able to locate 3191 antigen proteins from 25 distinct poxviruses. From these antigenic proteins, PoxiPred redundantly located up to five epitopes per protein, resulting in 16,817 potential T-cell epitopes which were mostly (i.e., 92%) predicted as being reactive to CD8+ T-cells. PoxiPred is able to, on a single run, identify antigens and T-cell epitopes for poxviruses with one single input, i.e., the proteome file of any poxvirus.

4.
J Biomol Struct Dyn ; : 1-15, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115191

RESUMEN

The omicron (B.1.19) variant of contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is considered a variant of concern (VOC) due to its increased transmissibility and highly infectious nature. The spike receptor-binding domain (RBD) is a hotspot of mutations and is regarded as a prominent target for screening drug candidates owing to its crucial role in viral entry and immune evasion. To date, no effective therapy or antivirals have been reported; therefore, there is an urgent need for rapid screening of antivirals. An extensive molecular modelling study has been performed with the primary goal to assess the inhibition potential of natural flavonoids as inhibitors against RBD from a manually curated library. Out of 40 natural flavonoids, five natural flavonoids, namely tomentin A (-8.7 kcal/mol), tomentin C (-8.6 kcal/mol), hyperoside (-8.4 kcal/mol), catechin gallate (-8.3 kcal/mol), and corylifol A (-8.2 kcal/mol), have been considered as the top-ranked compounds based on their binding affinity and molecular interaction profiling. The state-of-the-art molecular dynamics (MD) simulations of these top-ranked compounds in complex with RBD exhibited stable dynamics and structural compactness patterns on 200 nanoseconds. Additionally, complexes of these molecules demonstrated favorable free binding energies and affirmed the docking and simulation results. Moreover, the post-simulation validation of these interacted flavonoids using principal component analysis (PCA) revealed stable interaction patterns with RBD. The integrated results suggest that tomentin A, tomentin C, hyperoside, catechin gallate, and corylifol A might be effective against the emerging variants of SARS-CoV-2 and should be further evaluated using in-vitro and in-vivo experiments.Communicated by Ramaswamy H. Sarma.

5.
J Cell Biochem ; 124(5): 701-715, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946432

RESUMEN

Mpox (formerly Monkeypox), a zoonotic illness caused by the Mpox virus, belongs to the Orthopoxvirus genus in the family Poxviridae. To design and develop effective antiviral therapeutics against DNA viruses, the DNA-dependent RNA polymerase (DdRp) of poxviruses has emerged as a promising drug target. In the present study, we modeled the three-dimensional (3D) structure of DdRp using a template-based homology approach. After modeling, virtual screening was performed to probe the molecular interactions between 1755 Food and Drug Administration-approved small molecule drugs (≤500 molecular weight) and the DdRp of Mpox. Based on the binding affinity and molecular interaction patterns, five drugs, lumacaftor (-11.7 kcal/mol), conivaptan (-11.7 kcal/mol), betulinic acid (-11.6 kcal/mol), fluspirilene (-11.3 kcal/mol), and imatinib (-11.2 kcal/mol), have been ranked as the top drug compounds interacting with Mpox DdRp. Complexes of these shortlisted drugs with DdRp were further evaluated using state-of-the-art all-atoms molecular dynamics (MD) simulations on 200 nanoseconds followed by principal component analysis (PCA). MD simulations and PCA results revealed highly stable interactions of these small drugs with DdRp. After due validation in wet-lab using available in vitro and in vivo experiments, these repurposed drugs can be further utilized for the treatment of contagious Mpox virus. The outcome of this study may establish a solid foundation to screen repurposed and natural compounds as potential antiviral therapeutics against different highly pathogenic viruses.


Asunto(s)
Reposicionamiento de Medicamentos , Mpox , Humanos , ARN Polimerasas Dirigidas por ADN , Simulación de Dinámica Molecular , Antivirales/farmacología , Antivirales/química , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...